高中数学知识点都有什么 公式有哪些


    数学学习困难的研究是数学教学与实践中一个引人注目的问题,但是数学又是一个拉分很大的科目,大家学习完最好总结一下知识点和公式。
    高中数学知识点都有什么 公式有哪些
    高中数学知识点与公式
    集合
    1.集合的有关概念。
    1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
    注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
    ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
    ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
    2)集合的表示方法:常用的有列举法、描述法和图文法
    3)集合的分类:有限集,无限集,空集。
    4)常用数集:N,Z,Q,R,N*
    2.子集、交集、并集、补集、空集、全集等概念。
    1)子集:若对x∈A都有x∈B,则A B(或A B);
    2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )
    3)交集:A∩B={x| x∈A且x∈B}
    4)并集:A∪B={x| x∈A或x∈B}
    5)补集:CUA={x| x A但x∈U}
    注意:①? A,若A≠?,则? A ;
    ②若 , ,则 ;
    ③若 且 ,则A=B(等集)
    3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与的区别;(3) 与
    的区别。
    4.有关子集的几个等价关系
    ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
    ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
    5.交、并集运算的性质
    ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
    ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
    6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
    高中数学知识点总结及公式:基本初等函数
    从其中一个顶点向一个边引一条线,交另一边上某一点,则这个图形变成有一条公共边且另一组边在同一直线上的两个三角形。有六个内角,其中公共边与另一组在同一直线上的边相交形成的两个角中,每一个角都是一个三角形的一个内角,且是另一个三角形的一个外角……
    另外还有大于平角小于周角的角。
    正弦函数 sinθ=y/r
    余弦函数 cosθ=x/r
    正切函数 tanθ=y/x
    余切函数 cotθ=x/y
    正割函数 secθ=r/x
    余割函数 cscθ=r/y
    同角三角函数间的基本关系式:
    ·平方关系:
    sin^2(α)+cos^2(α)=1
    tan^2(α)+1=sec^2(α)
    cot^2(α)+1=csc^2(α)
    ·积的关系:
    sinα=tanα*cosα
    cosα=cotα*sinα
    tanα=sinα*secα
    cotα=cosα*cscα
    secα=tanα*cscα
    cscα=secα*cotα
    ·倒数关系:
    tanα·cotα=1
    sinα·cscα=1
    cosα·secα=1
    一个园,弧长和半径相等时所对应的角度是1弧度.弧度和角度的换算关系:
    弧度*180/(2*π)=角度
    诱导公式★
    常用的诱导公式有以下几组:
    公式一:
    设α为任意角,终边相同的角的同一三角函数的值相等:
    sin(2kπ+α)=sinα
    cos(2kπ+α)=cosα
    tan(2kπ+α)=tanα
    cot(2kπ+α)=cotα
    公式二:
    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    公式三:
    任意角α与 -α的三角函数值之间的关系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    公式四:
    利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    公式五:
    利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    公式六:
    π/2±α及3π/2±α与α的三角函数值之间的关系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)